Copied to
clipboard

G = C23.255C24order 128 = 27

108th central extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.255C24, C24.222C23, C22.862+ (1+4), C22.632- (1+4), C4230(C2×C4), C422C22C4, C424C417C2, C23.24(C22×C4), (C23×C4).60C22, C23.8Q8.9C2, (C2×C42).445C22, (C22×C4).774C23, C22.146(C23×C4), C24.C22.8C2, C23.63C2322C2, C23.65C2329C2, C2.8(C22.45C24), C2.C42.482C22, C2.8(C22.50C24), C2.37(C23.33C23), C2.11(C22.46C24), C2.10(C22.47C24), (C4×C4⋊C4)⋊49C2, C4⋊C418(C2×C4), C2.42(C4×C4○D4), C22⋊C4.12(C2×C4), (C4×C22⋊C4).32C2, (C2×C4).52(C22×C4), (C2×C4).727(C4○D4), (C2×C4⋊C4).831C22, (C2×C422C2).3C2, C22.140(C2×C4○D4), (C2×C22⋊C4).446C22, SmallGroup(128,1105)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.255C24
C1C2C22C23C22×C4C2×C42C424C4 — C23.255C24
C1C22 — C23.255C24
C1C23 — C23.255C24
C1C23 — C23.255C24

Subgroups: 396 in 248 conjugacy classes, 140 normal (82 characteristic)
C1, C2 [×7], C2 [×2], C4 [×24], C22 [×7], C22 [×10], C2×C4 [×20], C2×C4 [×36], C23, C23 [×2], C23 [×6], C42 [×4], C42 [×11], C22⋊C4 [×12], C22⋊C4 [×5], C4⋊C4 [×12], C4⋊C4 [×9], C22×C4 [×14], C22×C4 [×5], C24, C2.C42 [×12], C2×C42 [×8], C2×C22⋊C4 [×6], C2×C4⋊C4 [×8], C422C2 [×8], C23×C4, C424C4, C4×C22⋊C4 [×2], C4×C4⋊C4 [×3], C23.8Q8, C23.63C23 [×3], C24.C22 [×3], C23.65C23, C2×C422C2, C23.255C24

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C4○D4 [×8], C24, C23×C4, C2×C4○D4 [×4], 2+ (1+4), 2- (1+4), C4×C4○D4 [×2], C23.33C23, C22.45C24, C22.46C24, C22.47C24, C22.50C24, C23.255C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=e2=c, f2=a, g2=ba=ab, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 30)(2 31)(3 32)(4 29)(5 54)(6 55)(7 56)(8 53)(9 48)(10 45)(11 46)(12 47)(13 52)(14 49)(15 50)(16 51)(17 42)(18 43)(19 44)(20 41)(21 40)(22 37)(23 38)(24 39)(25 34)(26 35)(27 36)(28 33)(57 64)(58 61)(59 62)(60 63)
(1 61)(2 62)(3 63)(4 64)(5 26)(6 27)(7 28)(8 25)(9 41)(10 42)(11 43)(12 44)(13 37)(14 38)(15 39)(16 40)(17 45)(18 46)(19 47)(20 48)(21 51)(22 52)(23 49)(24 50)(29 57)(30 58)(31 59)(32 60)(33 56)(34 53)(35 54)(36 55)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 3 18)(2 42 4 44)(5 23 7 21)(6 39 8 37)(9 60 11 58)(10 64 12 62)(13 27 15 25)(14 33 16 35)(17 29 19 31)(22 55 24 53)(26 49 28 51)(30 41 32 43)(34 52 36 50)(38 56 40 54)(45 57 47 59)(46 61 48 63)
(1 49 30 14)(2 24 31 39)(3 51 32 16)(4 22 29 37)(5 11 54 46)(6 44 55 19)(7 9 56 48)(8 42 53 17)(10 34 45 25)(12 36 47 27)(13 64 52 57)(15 62 50 59)(18 26 43 35)(20 28 41 33)(21 60 40 63)(23 58 38 61)
(1 25 58 53)(2 26 59 54)(3 27 60 55)(4 28 57 56)(5 31 35 62)(6 32 36 63)(7 29 33 64)(8 30 34 61)(9 37 20 52)(10 38 17 49)(11 39 18 50)(12 40 19 51)(13 48 22 41)(14 45 23 42)(15 46 24 43)(16 47 21 44)

G:=sub<Sym(64)| (1,30)(2,31)(3,32)(4,29)(5,54)(6,55)(7,56)(8,53)(9,48)(10,45)(11,46)(12,47)(13,52)(14,49)(15,50)(16,51)(17,42)(18,43)(19,44)(20,41)(21,40)(22,37)(23,38)(24,39)(25,34)(26,35)(27,36)(28,33)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,26)(6,27)(7,28)(8,25)(9,41)(10,42)(11,43)(12,44)(13,37)(14,38)(15,39)(16,40)(17,45)(18,46)(19,47)(20,48)(21,51)(22,52)(23,49)(24,50)(29,57)(30,58)(31,59)(32,60)(33,56)(34,53)(35,54)(36,55), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,3,18)(2,42,4,44)(5,23,7,21)(6,39,8,37)(9,60,11,58)(10,64,12,62)(13,27,15,25)(14,33,16,35)(17,29,19,31)(22,55,24,53)(26,49,28,51)(30,41,32,43)(34,52,36,50)(38,56,40,54)(45,57,47,59)(46,61,48,63), (1,49,30,14)(2,24,31,39)(3,51,32,16)(4,22,29,37)(5,11,54,46)(6,44,55,19)(7,9,56,48)(8,42,53,17)(10,34,45,25)(12,36,47,27)(13,64,52,57)(15,62,50,59)(18,26,43,35)(20,28,41,33)(21,60,40,63)(23,58,38,61), (1,25,58,53)(2,26,59,54)(3,27,60,55)(4,28,57,56)(5,31,35,62)(6,32,36,63)(7,29,33,64)(8,30,34,61)(9,37,20,52)(10,38,17,49)(11,39,18,50)(12,40,19,51)(13,48,22,41)(14,45,23,42)(15,46,24,43)(16,47,21,44)>;

G:=Group( (1,30)(2,31)(3,32)(4,29)(5,54)(6,55)(7,56)(8,53)(9,48)(10,45)(11,46)(12,47)(13,52)(14,49)(15,50)(16,51)(17,42)(18,43)(19,44)(20,41)(21,40)(22,37)(23,38)(24,39)(25,34)(26,35)(27,36)(28,33)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,26)(6,27)(7,28)(8,25)(9,41)(10,42)(11,43)(12,44)(13,37)(14,38)(15,39)(16,40)(17,45)(18,46)(19,47)(20,48)(21,51)(22,52)(23,49)(24,50)(29,57)(30,58)(31,59)(32,60)(33,56)(34,53)(35,54)(36,55), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,3,18)(2,42,4,44)(5,23,7,21)(6,39,8,37)(9,60,11,58)(10,64,12,62)(13,27,15,25)(14,33,16,35)(17,29,19,31)(22,55,24,53)(26,49,28,51)(30,41,32,43)(34,52,36,50)(38,56,40,54)(45,57,47,59)(46,61,48,63), (1,49,30,14)(2,24,31,39)(3,51,32,16)(4,22,29,37)(5,11,54,46)(6,44,55,19)(7,9,56,48)(8,42,53,17)(10,34,45,25)(12,36,47,27)(13,64,52,57)(15,62,50,59)(18,26,43,35)(20,28,41,33)(21,60,40,63)(23,58,38,61), (1,25,58,53)(2,26,59,54)(3,27,60,55)(4,28,57,56)(5,31,35,62)(6,32,36,63)(7,29,33,64)(8,30,34,61)(9,37,20,52)(10,38,17,49)(11,39,18,50)(12,40,19,51)(13,48,22,41)(14,45,23,42)(15,46,24,43)(16,47,21,44) );

G=PermutationGroup([(1,30),(2,31),(3,32),(4,29),(5,54),(6,55),(7,56),(8,53),(9,48),(10,45),(11,46),(12,47),(13,52),(14,49),(15,50),(16,51),(17,42),(18,43),(19,44),(20,41),(21,40),(22,37),(23,38),(24,39),(25,34),(26,35),(27,36),(28,33),(57,64),(58,61),(59,62),(60,63)], [(1,61),(2,62),(3,63),(4,64),(5,26),(6,27),(7,28),(8,25),(9,41),(10,42),(11,43),(12,44),(13,37),(14,38),(15,39),(16,40),(17,45),(18,46),(19,47),(20,48),(21,51),(22,52),(23,49),(24,50),(29,57),(30,58),(31,59),(32,60),(33,56),(34,53),(35,54),(36,55)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,3,18),(2,42,4,44),(5,23,7,21),(6,39,8,37),(9,60,11,58),(10,64,12,62),(13,27,15,25),(14,33,16,35),(17,29,19,31),(22,55,24,53),(26,49,28,51),(30,41,32,43),(34,52,36,50),(38,56,40,54),(45,57,47,59),(46,61,48,63)], [(1,49,30,14),(2,24,31,39),(3,51,32,16),(4,22,29,37),(5,11,54,46),(6,44,55,19),(7,9,56,48),(8,42,53,17),(10,34,45,25),(12,36,47,27),(13,64,52,57),(15,62,50,59),(18,26,43,35),(20,28,41,33),(21,60,40,63),(23,58,38,61)], [(1,25,58,53),(2,26,59,54),(3,27,60,55),(4,28,57,56),(5,31,35,62),(6,32,36,63),(7,29,33,64),(8,30,34,61),(9,37,20,52),(10,38,17,49),(11,39,18,50),(12,40,19,51),(13,48,22,41),(14,45,23,42),(15,46,24,43),(16,47,21,44)])

Matrix representation G ⊆ GL5(𝔽5)

10000
01000
00100
00040
00004
,
10000
04000
00400
00010
00001
,
40000
04000
00400
00010
00001
,
30000
00100
04000
00002
00030
,
30000
03000
00300
00040
00001
,
10000
00100
01000
00020
00002
,
10000
03000
00300
00001
00040

G:=sub<GL(5,GF(5))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[3,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,2,0],[3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,4,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,2],[1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,1,0] >;

50 conjugacy classes

class 1 2A···2G2H2I4A···4X4Y···4AN
order12···2224···44···4
size11···1442···24···4

50 irreducible representations

dim1111111111244
type++++++++++-
imageC1C2C2C2C2C2C2C2C2C4C4○D42+ (1+4)2- (1+4)
kernelC23.255C24C424C4C4×C22⋊C4C4×C4⋊C4C23.8Q8C23.63C23C24.C22C23.65C23C2×C422C2C422C2C2×C4C22C22
# reps112313311161611

In GAP, Magma, Sage, TeX

C_2^3._{255}C_2^4
% in TeX

G:=Group("C2^3.255C2^4");
// GroupNames label

G:=SmallGroup(128,1105);
// by ID

G=gap.SmallGroup(128,1105);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,456,758,100,346,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=e^2=c,f^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations

׿
×
𝔽